
All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 11

CMSC 426

Principles of Computer Security

Lecture 03

Assembly and Stack Basics

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 2

Last Class We Covered

 Security Standards

 Standards Bodies

 Security Principles

 Security Strategy

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 3

Any Questions from Last Time?

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 4

Today’s Topics

 Memory allocation in programs

 Assembly language review

 Registers

 PUSH, POP, CALL, RET

 cdecl

 Code example

 Vulnerable code

 Finding and avoiding

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 5

Stacks, Heaps, and More

 Processes get their own

address space when run

 Address space is divided

into smaller pieces, each

with a specific purpose

 Stack grows “down” to

lower addresses

Stack

Heap

Global/Static Vars

Code/Text

0xFFFFFF

0x000000

address
space

Function calls,
locals

Dynamically
allocated
memory

“data segment”

“code segment”

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 6

Stack Allocation

 Memory allocated by the program as it runs

 Local variables

 Function calls

 Parameters passed

 Function-local variables

 Return addresses

 Grows “down” from the top

 As things are pushed onto the stack, the address decreases

Stack

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 7

Heap Allocation

 Dynamically allocated memory

 Memory explicitly allocated by the user

 Using malloc(), calloc(), new, etc.

 Creation and deletion (freeing) is

controlled by the user

 Grows “up” towards the stack

Heap

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 8

Writing Data to Buffers

 Programs constantly write data to areas of memory (buffers)

 Higher level languages (Java, Python, etc.) do a lot of user

hand-holding and won’t allow unsafe use of the language

 Lower level languages (C, etc.) do a minimal amount of

checking, and can only be used safely if we assume

that the programmer knows what they’re doing

 Even if they do (they often don’t) they still have to be careful

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 9

Buffer Overflows

 When a buffer has data written to it that exceeds

the size of the buffer, a buffer overflow occurs

 The excess data continues to write, overflowing into

nearby variables and other areas of memory

 When this happens inside the stack, it’s called a stack overflow

 But why would a stack overflow be more dangerous than

something else, like a heap overflow?

 Let’s talk assembly language for a bit…

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 10

Assembly Language Review

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 11

x86 Registers
 EAX, EBX, ECX, EDX

 Used for general data storage

 ESI, EDI

 Source and destination registers

 (Mostly used for string and buffer operations)

 ESP, EBP

 Stack and base pointer

 (Used for keeping track of stack frames and operations)

 EIP

 Instruction pointer (points to current instruction being executed)

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 12

x86 Registers
 EAX, EBX, ECX, EDX

 Used for general data storage

 ESI, EDI

 Source and destination registers

 (Mostly used for string and buffer operations)

 ESP, EBP

 Stack and base pointer

 (Used for keeping track of stack frames and operations)

 EIP

 Instruction pointer (points to current instruction being executed)

what matters for
our purposes

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 13

Assembly Language Instructions

 PUSH

 PUSH adds data to the top of the stack

 POP

 POP removes an item from the top of the stack

 CALL

 Call a subroutine (i.e., a function)

 RET

 Return from a subroutine

With thanks to Dr. Jennifer Rexford’s on Function Calls in Assembly Language for some much-needed clarification:

https://www.cs.princeton.edu/courses/archive/spr11/cos217/lectures/15AssemblyFunctions.pdf

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 14

PUSH in Assembly Language

 What does PUSH actually do?

 PUSH myVal

 SUB ESP, 4

 MOV [ESP], myVal

Subtract 4 from the stack pointer
(“make room” on the stack)

Copy the value into where ESP points:
the “new room” made on the stack

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 15

POP in Assembly Language

 What does POP actually do?

 POP myRegister

 MOV myRegister, [ESP]

 ADD ESP, 4

Add 4 to the stack pointer
(move the stack back “up”)

Copy the value off the
stack into the register

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 16

Reminder – Stack Growth

 The stack grows down

 The ESP is the “stack pointer”

 Keeps track of the “top” of the stack (actually the lowest valid address)

 The boundary between actual data and junk on the stack

 When the ESP is incremented, we are going UP the stack

 This means something is being removed from the stack

 When the ESP is decremented, we are going DOWN the stack

 This means space is being “added” to the stack for new information

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 17

CALL in Assembly Language

 What does CALL actually do?

 CALL myFunc

 PUSH params

 PUSH EIP

 SUB ESP, 4

 MOV [ESP], EIP

 PUSH EBP

 MOV ESP, EBP

 JMP myFunc Have EIP jump to where the function
you’re calling resides in memory

Push the address in memory
you’ll want to return to
(i.e., where the next
instruction is stored, in EIP)

Push any function parameters
onto the stack; they’ll be
referenced in relation to EBP

Push the base pointer onto the
stack, then move it to the current
“edge,” where the new function is

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 18

RET in Assembly Language

 What does RET actually do?

 RET

 MOV EBP, ESP

 POP EBP

 POP EIP

 Trusting that whatever’s at the top

of the stack is the return address

Pop the return address we
previously stored back into EIP

Put the stack pointer back
to where it was “before”
this function was executed

Put the base pointer back to
where it was before ...

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 19

x86 Registers
 EAX, EBX, ECX, EDX

 Used for general data storage

 ESI, EDI

 Source and destination registers

 (Mostly used for string and buffer operations)

 ESP, EBP

 Stack and base pointer

 (Used for keeping track of stack frames and operations)

 EIP

 Instruction pointer (points to current instruction being executed)

 EAX, EBX, ECX, EDX

 Used for general data storage

 ESI, EDI

 Source and destination registers

 (Mostly used for string and buffer operations)

 EIP

 Instruction pointer (points to current instruction being executed)

The “edge” of the entire
stack (lowest address)

The “base” of the current
context (i.e., the function)

We’ll want to keep track of
these as we talk about the stack

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 20

cdecl

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 21

What is cdecl?

 The calling convention for the C programming language

is called “cdecl” (short for “C declaration”)

 Calling conventions determine

 Order in which parameters are placed onto the stack

 Which registers are used/preserved for the caller

 How the stack in general is handled

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 22

Simple Cdecl Example – Code

 What actually happens

on the stack when this

program is run?

 What variables are

allocated first?

 How does the stack

grow?

int myFunc(char *par1, int par2)

{

char local1[64];

int local2;

return 0;

}

int main(int argc, char **argv)

{

myFunc(argv[1], atoi(argv[2]);

return 0;

}

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 23

Simple Cdecl Example – Calling

Previous function’s

Stack Frame (local vars, etc.)

par2

par1

Return Address (from EIP)

local1

local2

Previous function’s EBP

 PUSH par2

 PUSH par1

 PUSH EIP

 PUSH EBP

 MOV EBP, ESP

 SUB ESP, 68

 64 bytes for chars

 4 bytes for integer

 ESP

 EBP

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 24

Simple Cdecl Example – Returning

 MOV ESP, EBP

 POP EBP

 POP EIP

Previous function’s

Stack Frame (local vars, etc.)

par2

par1

Return Address (from EIP)

local1

local2

Previous function’s EBP

 ESP

 EBP
The caller handles
popping parameters
upon return.

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 25

Vulnerable Code

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 26

Possible Vulnerabilities

 There are a number of vulnerable pieces left on the stack

during the process of calling a function and returning from it

 Assumed that all “pieces” are in the correct place and

are not changed or tampered with

 Address popped into EBP: base pointer of calling function

 Address popped into EIP: address of code to return to

 Information of all previously called function (EIPs, EBPs, etc.)

 Most exploitable is the EIP, the return address

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 27

Finding and Avoiding Vulnerable Code

 Easiest way to find: inspect source code of programs

 Trace the execution of programs with oversized input

 Brute forcing or “fuzzing” a program with large inputs to see if errors

arise

 To avoid vulnerable code: ensure that buffers only take in the

amount of data they can actually hold

 Enforce size limits on inputs from users and files

 Use a higher-level language when needed

 Don’t use bad, outdated functions!

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 28

Unsafe Functions and Alternatives

 Set a maximum size/number of characters to handle at once

Unsafe Safe Description

gets() fgets() Read characters from a stream

strcpy() strncpy() Copy from one string to another

strcat() strncat() Concatenate one string to another

sprintf() snprintf() Write data to a string

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 29

Safe Programming and Safe Libraries

 Early language designers hoped/assumed that programmers

would exercise care and foresight when writing code

 (and were also limited in what the technology could do at the time)

 C allows for better performance and space efficiency than Java

 But, programmers are not generally careful or thoughtful

 Standard libraries allow for unsafe actions (like previous slide)

 Create alternatives to unsafe functions/entire libraries

 Requires rewriting/updating the source code

 Create safe versions of type libraries (like strings)

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 30

Making a “Memory Safe” C

 Many have tried, many have failed (to have it catch on)

 There are literally dozens of “memory safe” C attempts

 Cyclone in 2000

 CCured in 2002

 Fail-safe C in 2009

 Safe-C in 2011

 Others have come up with annotations, semantic restrictions,

and modified hardware or compilers to solve the problem

 PROTIP: don’t pick this for a dissertation topic

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 31

Daily Security Tidbit

 June 2007, Lifelock used CEO Todd Davis’s social security

number prominently in many of its advertisements

 Meant to show how good the company was at preventing identity theft

 His identity was stolen 13 times within the year

 Most of it was small charges ($100 - $500), probably done by people

showing off that it could be done

 Lifelock was fined by the FTC for deceptive advertising

Information taken from https://www.wired.com/2010/05/lifelock-identity-theft/

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 32

Announcements

 Sign up for Piazza if you haven’t already, as assignments will

be starting soon

